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FOREWORD 

The results of Section I1 of this Report were presented at the 1962 
National Conference of the Association for Computing Machinery. 
Portions of this Report will appear in Numerische Muthemutik. 
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A ABSTRACT 

/44.l io 
Characterization theorems, solution procedures, and results of nu- 

merical examples are reported regarding the problem of partitioning 
an interval so that the largest error incurred in approximating a con- 
tinuous function by separate polynomial or rational forms on each 
subinterval is minimized. A- 

1. INTRODUCTION 

A problem that must be faced repeatedly in a scientific 
computing center is that of finding economically com- 
putable representations for various known functions. In 
this context a known function is one for which some 
usable but possibly uneconomical representation is al- 
ready available. For example, the function may be de- 
fined by a slowly converging power series or by the 
numerical solution of a differential equation. 

Two commonly used methods of function representa- 
tion that are frequently computationally convenient are 
table look-up and polynomial approximation. Some gen- 
eralizations of these methods, which in some cases pro- 
vide more economy, include rational approximation (Le., 
one polynomial divided by another polynomial) and seg- 
mented polynomial or segmented rational approximation. 

A segmented approximation is one in which different 
polynomials or rational functions are used for different 

subintervals of the argument domain. For some func- 
tions, breakpoints for convenient segmentation are sug- 
gested by identities satisfied by the functions. In other 
cases there are no such natural breakpoints and it be- 
comes relevant to pose the following problems : 

Problem I 
How can a given interval be partitioned into sub- 
intervals so that the maximum error in approximat- 
ing a given continuous function by m different 
polynomials or rational functions of specified degrees 
will be as small as possible? 

Problem I1 
What is the smallest integer m such that a given 
continuous function can be approximated to within 
a specified error tolerance on a specified interval by 
using m different polynomials or rational functions 
of specified degrees? 

1 
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The theory of these approximation problems has pre- 
viously been studied for some restricted cases of particular 
interest (Ref. 1-4). Section I1 gives existence and char- 
acterization theorems for Problem I and establishes other 
results that are useful in suggesting solution methods. 

In practice, approximation problems of the type under 
consideration can vary widely with regard to the number 
of parameters to be determined and the precision re- 
quired. Appropriately, therefore, methods of varying 
degrees of generality have been devised for solving these 
problems (Ref. 1-3, 5-11). In Section I11 a computation 

method that appears to have a wide range of applica- 
bility is described and compared with some of the other 
reported methods. 

A number of computer programs were written in sup- 
port of the work reported here. Besides the double- 
precision (54 - bit) programs NODFIT, SEGFIT, and 
SEQFIT, and the single-precision program SEGSQ, two 
extended-precision arithmetic packages were adapted to 
FORTRAN to provide 70-bit and 140-bit arithmetic. 
Versions of NODFIT and SEGFIT were written to use 
these packages for computing high-precision approxi- 
mators for various elementary functions. 

II. CHARACTERISTIC PROPERTIES OF THE SEGMENTED 
RATIONAL MINMAX APPROXIMATION PROBLEM 

A rational minmax approximator for a continuous real 
valued function on a closed, bounded real interval ex- 
hibits a characteristic balancing of the extremes of the 
error curve (Ref. 12). This property has been exploited in 
some of the methods that have been devised for the 
numerical solution of the rational minmax approximation 
problem (Ref. 13-17). Such methods strive iteratively to 
improve the balance of the extremes of the error curve. 

In this Section, it is shown that there is also a property 
of balanced maximum errors associated with the seg- 
mented rational minmax problem. It is a sufficient, but 
not a necessary, condition for a solution. The segmented 
problem need not have a unique solution, but it always 
has some solution that has the balanced error property. 

Numerical solution methods for the segmented minmax 
problem can be based upon this property. Section I11 
describes such a method and gives some numerical 
examples. 

Section IIA is devoted to three independent lemmas 
that identify the properties of rational minmax approxi- 
mation and segmentation upon which the remainder of 
the development rests. Some other settings of practical 
interest in which Lemmas 1 and 2, and thus all the re- 
sults of this Report, hold are positively weighted rational 
minmax approximation and minmax approximation by 
linear combinations of a given finite set of continuous 
functions. 

In Section IIB, the segmented rational minmax ap- 
proximation problem is stated, and the existence of a 
solution is deduced. In Section IIC, the existence of a 
solution having the balanced error property is established. 
In Section IID, some inequalities similar to those known 
in the linear. least maximum problem are established, and 
the balanced error property is shown to be a sufficient 
condition for a solution. 

In Section IIE, it is shown that, for any initial position 
of the breakpoints defining the segmentation, there is a 
continuous transformation of the breakpoints, which per- 
mits the maximum error to descend to its minimum value. 
Section IIF provides some examples illustrating the lack 
of convexity in this problem. 

A. Three Basic Lemmas 

Let f be a continuous real valued function on the non- 
degenerate closed, bounded real interval [ a ,P ] .  Let n 
and d be nonnegative integers. Let G be the class of 
rational functions whose numerators and denominators 
are polynomials of degrees not exceeding n and d, re- 
spectively. For real numbers v and 2u satisfying 

a < v < w < P  

define the minmax error function h by 

h(v, w )  = min max If(x) - g(r)\  
g ~ G v  < x < w 

2 
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Lemma 1.’ The function h is continuous on the com- 
pact region of vw-space defined by a I v I w 5 p .  

Proof. Let v and w satisfy a 5 v 5 w 5 p. Suppose 
h is not continuous at ( v ,  w ) .  Then there exists an E > 0 
and sequences { v i }  and { w ; }  with a 2 vi 5 w ;  5 p , i  = 
1, 2, ‘ 1 . )  such that limi v i  = v ,  limi w ;  = w ,  and 

jh(v i , t cCi )  - h(v,w)l > ~ f o r a l l i =  1,2;.., (1) 

Let g (respectively g , ,  i = 1, ...) denote a member of 
G that is the minmax approximator for f on [v ,  w ]  (re- 
spectively [ v i ,  w i ] ,  i = 1, 2, ... ), normalized so that the 
coefficient of largest magnitude in g (respectively g i )  is 1. 
An existence theorem for these minmax approximators is 
given in Ref. 12. 

By definition 1 f (x) - g (x)l is bounded by h (u, w )  for 
XE [ v ,  w ]  . Consequently the continuity of f and g permits 
us to choose a 6 > 0 such that 

for x in the closed interval I between max { v  - 6, a }  
and min { w  + 6, p} .  Without loss of generality, we will 
assume the points oi  and wi, i = 1,2, . . ., lie in the closed 
interval I .  

The definitions of h and 8 assure that 

h(v i ,w i )  2 max 1 f (x) - g ( x ) /  2 h ( v , w )  + E 

vi 5 x 5 wi 

Along with inequality (1) this implies 

If v = w, then h (v, w )  = 0, in which case inequality 
(2) is impossible and Lemma 1 is established. W e  pro- 
ceed to complete the proof for the case 2) < w .  

The normalization of the rational forms g,, g,, ..., 
assures that there is a subsequence of { g i }  whose cor- 
responding coefficients form convergent sequences. With- 
out loss of generality we will assume the sequence {g;} 
has this property. Let g“ denote the rational form whose 
coefficients are respectively the limits of the sequences 
of corresponding coefficients in the sequence { g ; } .  The 

1This lemma could be deduced from a more general continuity 
theorem given in Ref. 18, which in turn depends upon results 
established in Ref. 19. 

normalization assures that the coefficient of largest mag- 
nitude in g* is 1. 

Let r’ be any point satisfying v < x’ < w. Then for all 
sufficiently large i the point x‘ also satisfies v i  < x’ < wi, 
whence 

I f  (x’) - g, (x’)i 5 h ( v ; ,  wi )  5 h (v ,  W )  - E (3) 

for sufficiently large i .  It follows that, unless x’ is a zero 
of its denominator, g* satisfies 

If (x’) - g* (x’)l 5 h (v, U) - E .  

Since x‘ was chosen arbitrarily in (v,  w )  this relation 
holds for all x in (v ,  w )  except zeros of the denominator 
of g*.  

Any point x in (v ,  w )  that is an isolated zero of the 
denominator of g* must also be a zero of the numera- 
tor of g* with at least as great multiplicity, for otherwise 
inequality (3) would be violated in a neighborhood of x 
for sufficiently large i. Furthermore the denominator of 
g:: is not identically zero, for then inequality (3) would 
require that the same be true of the numerator of g*, 
contradicting the statement that one of the coefficients 
of g* is 1. It follows that if g’ is the rational form ob- 
tained from g* by removing all polynomial factors com- 
mon to the numerator and denominator of g*, then g’ 
satisfies 

I f  (x) - g’ (x)l 5 h (v ,  w )  - E for all x E (u, w) 

Under these circumstances g’ cannot have a pole at 
v or w and thus this bound for I f ( x )  - g ’ ( x ) l  is uniform 
throughout the closed interval [v ,  w ]  . 

This implies that g’ is a better approximator for f on 
[v,  w ]  than the best approximator, g, whose maximum 
error is h (u,  w ) .  This contradiction followed from the 
assumption that 11 was not continuous at ( v ,  w ) .  This 
completes the proof of Lemma 1. 

Lemma 2. The niinmar error function h as defined 
preceding Lemma 1 is nonincreasing in its first variable 
and nondecreasing in its second Gariable. 

Proof. Let v1 5 o,, 2 w,, 5 wl. Let gl be the least 
maximum approximator in C for f on [ol, w J .  

3 



JPL TECHNICAL REPORT NO. 32-579 

Lemma 3. Let m be an integer exceeding 1 and let ui 

and vi be numbers satisfying 

a = u ,  < ~ 1 < * * '  < u m - 1 < U m ~ j I  

and 

a = v ,  5 V I  5 * . *  <ti,,,-l 5 U m G P  

Then, unless ui = vi  for all i, there exist indices i and k 
such that the following proper inclusions hold: 

Euj-1, ujl  C [ v j - l ,  vjl 

[Vk-1,  V k l  c [Uk-1, U k l  

and 

Proof. Suppose ui # vi for some i. Let s be the first 
index for which inequality holds and without loss of 
generality assume us < v , ~ .  Then the lemma is established 
by letting i = s and letting k be the first index greater 
than i for which uk 2 u k .  

B. The Segmented Rational Minrnax 
Approximation Problem 

Let f be a continuous function on [a,  p ]  as in Section 
IIA. Let an integer m 2 2 specify the number of con- 
tiguous subintervals into which [a$] is to be partitioned 
by the selection of m - 1 breakpoints ui, i = 1 . . ., m - 1, 
satisfying 

(4) a=uo  < u1 I u2 5 2 u,,+~ 5 um=P 

Let ni and di, i = 1, . . a ,  m, be nonnegative integers 
and let Gi denote the set of rational functions whose 
numerators and denominators are respectively polyno- 
mials of degrees not exceeding ni and di. 

For i = 1, e . . ,  m, and f j r  u , - ~  and us satisfying a 5 u , - ~  
5 Ua 5 p, define the minmax error function for the ith 
subinterval by 

h, ( u ~ - ~ ,  u,) = min max If@) - g, (41 
ga E G, ut-1 5 x 5 ~z 

By Lemma 1 each of these functions h, is continuous 
on its domain of definition, 

Let U denote the subset of (m+l)-space consisting 
of those vectors u = (u,, uI .-., u,) whose components 
satisfy condition (4). On the set U define the maxminmax 
function p by 

p (u)  = max {hi ( u ~ - ~ ,  ui) : i = 1, e . . ,  m} 

Our problem is to minimize p over U .  

The continuity of the functions hi implies the conti- 
nuity of p. The existence of a solution vector u* is then 
an immediate consequence of the fact that U is compact. 

For our later use we introduce the following definitions: 

T = min { p  (u):  u E U }  

U" = { u  :/J,((u) = T} 

v (u) = min {hi ( u - ~ ,  ui)  : i = 1, ..., m} 

A vector u will be called balanced if 

,m i = 1, ' 1 .  hi ( ~ i - 1 ,  ~ i )  = p (u) 

Note that T can be called the minmaxminmux error for 
the problem. It will be shown that T = max { V  (u):  u E U }  
and thus T also deserves the title of maxminminmax error. 

C. Existence of a Balanced Solution Vector 

related dynamic programming problem. 
At this point it will be useful to introduce a closely 

To relate this to the problem formulated in Section 
IIB note that e i (ui)  is the minmaxminmax error for the 
i-segment problem on the interval [a ,  ui]. In particular 

4 
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e,  (p )  = T .  Equation (5) represents the fact that an 
i-segment minmaxminmax approximator on [a ,ui]  may be 
found by searching on the single variable for the most 
favorable combination of an (i- 1)-segment minmax- 
minmax approximator on [ a , ~ ~ - ~ ]  and a one-segment min- 
rnax approximator on [ ~ i - ~ , u i ] .  

Theorem 1. Statements A, C ,  and D are valid for 

A.  ei ( a )  = 0 

B.  Given ui E [ a $ ] ,  there exists vi-l E [a,vil 
such that ei (vi) = ei-l ( ~ i - ~ )  = hi (w1,v i )  

C .  ei is nondecreasing on [ a @ ]  

D .  ei is continuous on [a$]  

1 5 i 5 m a d  statement B for2 5 i 5 m. 

An immediate consequence of statement B in Theorem 1 
is the following theorem, which, for the case i = m, asserts 
the existence of a balanced solution vector. 

Theorem 2. Given vi € [ a ,  p ] ,  there exist vj,  i = 1, *.., 
I vi and ei (vi) = i - 1,  such that a = uo 5 u1 5 

hj (z?~-~, v j ) ,  i = 1, e . . ,  i .  

Proof of Theorem 1. Statement A, for i = 1, ..., m, 
follows directly from the fact that hi (a,a) = 0, i = 1, 

. e . ,  m. Statements C and D are valid for i = 1 due to 
Lemmas 2 and 1, respectively. 

Proof will now be given for statements B, C, and D for 
i > 1 under the induction hypothesis that C and D are 
valid fo r i  - 1. 

To prove B let v,  ~ [ a , p ]  be given. On the interval 
a I u , - ~  5 va, the function (ua-]) is nondecreasing 
and vanishes at the left end, whereas h,  (u , - ] ,  v , ) ,  consid- 
ered as a function of only, is nonincreasing and 
vanishes at the right end. Since both e,-l and h, are can- 
tinuous, there must be a point u , - ~  (not necessarily unique) 
in Ca,u,l at which e,-l  ( o ~ - ~ )  = h, (u,-], v , ) .  Such a point 
obviously provides the minimum value, among 
~ [ a , v , l ,  of max { e l - l  ( u , - ~ ) ,  h, ( u , - ~ ,  va)} .  This establishes 
statement B. 

For later use we note that the point also maximizes 
the value of min { e t - l  (uL-J,  h, ( u , - ~ ,  va)} among ua-1 

€ [ a ,  u , ] .  This permits an alternative definition of e ,  for 
i > 1: 

e ,  (ua) = max min {ea-l  h, ( ~ ~ - 1 ,  uz)} 
a I u , - ~  I u, 

(6) 

To prove C let v i  _< wi be given. Using B, there exists 
= hi (vi-l,  v i ) .  € [ a ,  vi3 such that ei (v i )  = 

Then for ui-l € [ a ,  

ei ( v i )  = hi v i )  < hi ( ~ i - ~ ,  vi) I hi ( U , L - ~ ,  zu i )  

I max { ei-l (ui-J, hi (w1, w i ) }  

while for E [ V , - ~ ,  w , ]  

e,  (0,) = ea-l (Ua-1) I e,-1 ( ~ ~ - 1 )  

I max { et-l (Ua-l), ha ( ~ ~ - 1 ,  w ) }  

Thus for all u , - ~  E [a ,  to,] 

ea (0%) 5 max {ea-l  (ua-l), ha ( ~ ~ - 1 ,  wa)} 

and so e,  (v , )  5 e,  (w, ) ,  which establishes statement C. 

For the proof of D let vi € [ a ,  p ]  and E > 0. Using the 
monotonicity established in C, it will suffice to prove the 
existence of a 6 > 0 such that, if vi # p, 

vi < ui < vi + S implies ei (ui) < ei ( v i )  + E 

and, if vi  # a, 

vi  > ui > vi  - 6 implies ei ( u , )  > ei ( v i )  - E 

By statement B there exists u , - ~  € [ a ,  u , ]  such that 
e,  (0,) = e,-1 ( ~ ~ - 1 )  = h, (0%-1, oa). By the continuity of h, 
(Lemma l), if 6 > 0 is sufficiently small, then jh, (o?-~, u , )  - 
hi (va-1, V I ) \  < E for jul - 0%) < 6. 

For ti, # ,f3 we may assume S is smaller than p - 0,. 

e ,  ( u , )  I max { ea-1 ( v l - l ) ,  h, ( ~ ~ - 1 ,  u , ) }  

Thenforv, < u,  < v ,  + 8 

- 
- h,  ( ~ ~ - 1 ,  u , )  < h, ( v l - l , v , )  + E = e,  (u,) + c 

Similarly for 2;, # a we may assume S < u ,  - a .  Then 
we wish to consider 1 1 ,  satisfying o,  > u,  > o,  -6, but 
two cases arise, depending on whether u , - ~  = v ,  or 
o,-~ < u, .  In the first case we have e,  (0,) = h, ( u , - ~ ,  u,)  = 0 
and thus, by C, e,  (u,)  = 0 for all u, € [ a ,  u , ]  . Thus we 
certainly have ea (u,) 2 ea (0%) - E .  

In the second case we may assume 8 is smaller than 
u, - u , - ~  so that va-l lies in [a, u,]  . Then using the alterna- 
tive definition (6) for e,  we obtain 

ea (u , )  2 min {ea-i (vL-d,  h, ( ~ ~ - 1 ,  u , ) }  

= ha (vt-19 ut) > h a  ( ~ 3 - 1 , U a )  - E 

This completes the proof of statement D and hence of 
Theorem 1. 

5 
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D. Sufficiency of the Balanced Error Property 
In Section IIC the existence of a balanced solution 

vector was established. In this Section it will be shown 
that every balanced vector is a solution vector. We con- 
tinue to use the notation introduced in Section IIB. 

Lemma 4. For any u and v in U 
v (u)  = mini hi ( w - ~ ,  ui )  5 maxi hi (vi-,, v i )  3 p (v )  

Proof. If u = v, the lemma is trivially true. Suppose 
u # v. Then by Lemma 3 there is an index i such that 

uj] C v j] .  Therefore, 

Y (u) I hj (ug-1, uj) I hj (v j -1 ,~j)  I P (0 )  

where the center inequality is due to Lemma 2. 

Lemma 5. For any UEU,  ~ ( u )  I T 2 p (u). 

Proof, The second inequality follows directly from the 
definition of T .  To establish the first inequality let u* be a 
solution vector and apply Lemma 4, obtaining 

Y ( U )  5 /.l (u*) = T 

An immediate consequence of Lemma 5 is 

Lemma 6. A balanced vector is a solution vector. 

E. Possibility of Descent to a Solution 
For any v E U and v* E U* there is a 

piecewise linear path P in U connecting v to v* and having 
the property that p (u) is nonincreasing as u moves along P 
from v to v*. 

Theorem3. 

Proof. A vector-valued function u will be defined that 
maps a real interval 0 I t I k (for some k < m)  onto a 
subset P of U in such a way that P has the properties stated 
in Theorem 3. 

Step 1. Set tc = 0. Set ui (0) = vi ,  i = 0,1, ..., m. 

Step 2. If ui (t,) = 07, i = 0, . e . ,  m, then set k = t ,  and 

Step 3. Let i be the first index such that [ u ~ - ~  (tc), uj (t,)] 

quit; otherwise go to Step 3. 

is a proper subset of [ ~ j j * - ~ ,  vj*I. 

We will call [uj-l ( t) ,  uj ( t ) ]  the key variable interval 
for the current iteration and [ ~ j * - ~ ,  vT] the key target in- 
terval. The effect of Steps 4a and 5a which follow will be 
to expand the key variable interval so that it coincides 
with the key target interval when t reaches t ,  + 1. Steps 

4h and 5b provide for components in the path of the ex- 
pansion to be carried along rather than being bypassed. 

Step 4a. For t ,  < t < t ,  + 1, let uj-l ( t )  vary linearly, 
taking the value VY-~ at t ,  + 1. 

Step 4b. If an index i < i- 1 satisfies 

ui (tr) E [ ~ j * - ~ ,  uj-1 (tc)l 

then, since the value uj-l ( t )  varies from 
the right to the left end of this interval as t 
varies from t ,  to t ,  + 1, there must be a point 
ti at which uj-l ( t i )  = ui (t,). Define ui ( t )  to 
be constant for t ,  t 5 t i  and to be equal 
to ( t )  for ti  I t 2 t ,  + 1. 

Step 5a. For t ,  < t < t,. + 1, let uj ( t )  vary linearly, 
taking the value vT at t ,  + 1. 

Step 5b. If an index i > i satisfies ui  ( te)  E [uj (t,), u:], 
then there must be a point ti at which 
uj (ti) = ui (tr) .  Define u i  ( t )  to be constant 
for t ,  5 t I ti and to be equal to uj ( t )  for 
ti 5 t I t ,  + 1. 

For each index i not treated in Steps 4 or 5, 
define ui ( t )  to be constant for t ,  < t < t,. + 1. 

Replace t,. by t ,  + 1 and return to Step 2. 

Step6. 

Step 7. 

Remark 1 .  The graph in Fig. 1 illustrates a set of func- 
tions ui ( t )  defined by the above construction. In this illus- 
tration the key variable interval for the first iteration, i.e., 
as tvaries from 0 to 1, is [u, (t),  u1 ( t ) ]  , The succeeding key 
variable intervals are [ t i 3  ( t ) ,  u, ( t ) ]  and [ue ( t ) ;  us ( t ) ] .  
Note that u2 ( t )  coincides with u3 ( t )  in the latter part of 
the interval 1 I t 2 2. 

Remark2. The existence of the index i needed in 
Step 3 is assured by Lemma 3. 

Fig. 1. Illustration of proof of Theorem 3 

6 
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Remark 3. In Steps 4a and 5a at least one of the com- 
ponents uj+ or uj is not equal to its final value (UT-, or 
v:, respectively) a t  t = t,, but both are equal to their final 
values at t = t ,  + 1. Both of these two components remain 
constant for t 2 t ,  + 1. Thus at least one previously un- 
stabilized component stabilizes on each iteration and so 
the procedure terminates after, at most, rn - 1 iterations. 

Consider the problem of approximating f by two con- 
stant functions, i.e., m = 2, n, = n, = d, = d, = 0. 
The space U of possible breakpoint vectors consists of all 
vectors of the form (-7,  u,, 7) with -7  5 u1 1 7 .  The 
functions hl, h,, and p are then given by linear interpola- 
tion in the following tabulation: 

Remark 4. The function p(u)  can increase with increas- 
ing t only if one of the functions hi ( u ; - ~ ,  ui)  increases as 
t increases. For hi ( ~ i - ~ ,  u ; )  to increase it is necessary that 
either ui-, decrease or ui increase and that ui- l  be distinct 
from t i i ,  

In the given construction only the key variable interval 
is permitted to move in this manner. Since it is covered 
by its target interval during the move, it follows from 
Lemma 2 that hj (uj-,, uj) 5 hj (u:.,, u:) 2 T. This move 
cannot cause an increase in p because p is never less 
than T .  Thus p is nonincreasing as t goes from 0 to k; 
Le., as u goes from u to e* in the prescribed manner. 

The set { u  ( t ) :  0 5 t 5 k} has, therefore, all of the 
properties required of the path P .  This concludes the 
proof of Theorem 3. 

F. Counterexamples 

In the light of the favorable descent properties stated 
in Theorem 3 it is natural to inquire whether p is a con- 
vex function on U .  Example A below shows that this 
need not be the case. Example B shows that the solution 
set U* can fail to be convex, although Theorem 3 does 
imply that U* is arcwise connected. 

Example A. This example shows that the function p 

can fail to be convex and that p can have weak local 
minima which are not global minima. Define f (x) for 
1x1 2 7 by linear interpolation in the following tabulation: 

I X 1 - 7  1-51-3 1-1 I 1 I 3 1 5  1 7  I 

The function p is seen to be nonconvex. If f is rede- 
fined in the interval [ - 1, 13 to be sin m/2, then the 
new p will be nonconvex in every neighborhood of the 
solution vector ( -7 ,0 ,7) .  

The function p has many weak local minima; for ex- 
ample, every point in the open interval between u, = -3  
and uI = -1. The only strong minimum is the global 
minimum at ul = 0. 

Example B. This example shows that U* can fail to 
be convex. Define f (x) for 1x1 5 4 by linear interpolation 
in the following tabulation: 

We will approximate f by three linear polynomials, i.e., 
m = 3, n, = n2 = n3 = 1, d, = dz = d, = 0. One solu- 
tion is u = (-4, -2, 0, 4), g, (x) = - x, g2 ( x )  = -x, 
g s  (x) = x, p =1. Another solution is u = (-4, 0, 2, 4), 
gl (x) = -x, g2 (2) = x, g3 (x) = x, p = 1. The mid- 
point between u and v, namely (-4, - 1, 1, 4), does not 
provide a solution however, since the best approximator 
on [ - 1, 11 is g2 (x) = 0.5 and this permits a maximum 
error of 1.5. 

7 
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111. COMPUTATION OF SEGMENTED APPROXIMATIONS 

Piecewise linear approximations have found applica- 
tion in the design of diode function generators (Ref. 3) 
and in the linearization of nonlinear constraints in mathe- 
matical programming (Kef. 6). Segmented functions using 
polynomials of higher degree and rational forms have 
been used in function generation subroutines for digital 
computers (Ref. 1, 5, 11, 20). 

Three different types of segmented approximation 
problems will be defined, with a suggested computation 
method for each. These methods have been programmed 
and some numerical examples will be reported. 

A. Problem I 
In this formulation of the segmented approximation 

problem, there is given a continuous function f on a 
closed interval [a,  p ] ,  an integer m specifying the num- 
ber of subintervals into which [a,  p] is to be partitioned, 
and integers n, and tl , ,  = 1, ..., m, specifying the de- 
grees of the numerator and denominator, respectively, of 
the rational form to be used in approximating f on the ith 
subinterval. The problem is to determine m - 1 break- 
points up,  i = 1, ..., m - 1 satisfying 

a = u ,  5 ~1 5 U Z  5 5 ~ v a - 1  5 u m = p  (7) 

and rational functions r p  of the specified degrees such 
that 

max max if (4 - TI (4 
i = 1, ... , m u , - ~  I x i uL 

is minimized. 

If it is assumed that a method is available (Ref. 13-17) 
for computing a least maximum approximator ri once a 
subinterval Cui-,, ui] is specified, then the problem may 
be viewed as the minimization of a real valued function 
of m - 1 variables, ui, i = 1, ..., m - 1 subject to the 
constraint (7). This minimization problem can be given a 
dynamic programming formulation (Section I1 C and 
Ref. 8-10). 

In designing a solution method, it is helpful to have 
more information about the structure of the problem. In 
particular, it was shown in Section I1 that the maximum 
absolute error hi of the least maximum approximator on 
the ith subinterval depends continuously upon the end- 
points of the subinterval. There always exists a set of 
breakpoints that produces the condition h, = h, = . = hm 

8 

and such a breakpoint set is a solution. Given any break- 
point set, there exists a continuous transformation of the 
breakpoints that moves them to a position at which 
h, = h, = e * *  = h, in such a way that maxihi is nonin- 
creasing throughout the transformation. 

Let 7 denote the minimum value of maxihi. Upper and 
lower bounds on T are provided respectively by the 
largest and smallest of the hi’s associated with any par- 
ticular set of breakpoints. 

The results stated above suggest that an iterative solu- 
tion method could be based upon an attempt to balance 
the hi’s by shortening the subintervals having the larger 
hi’s and lengthening the subintervals having the smaller 
hi’s. The details of such an algorithm will depend upon 
what assumption is made regarding the dependence 
of hi upon the breakpoints ui-l and ui. 

One such algorithm will be discussed, one that has 
been programmed and successfully used to obtain seg- 
mented approximations for some of the elementary func- 
tions and some other functions of practical interest. 
We assume that, for small changes in ui+ and ui, the 
minmax error hi depends only upon the length, si = 
ui  - u ~ - ~ ,  of the ith subinterval. We further assume that 
the dependence is of the form hi = ki s:i where ki is an 
unknown positive constant and ai = ni + di + 1. For 
typographical convenience, we define ci = Vui. 

The choice of the form h = k f was motivated by the 
results established by Maehly and Witzgall (Ref. 18, 19; 
also see 1, 21) for small s. Computational studies involv- 
ing rational and polynomial fits for the sine and exponen- 
tial function on various intervals indicate that this form 
provides a useful guide to the minmax error behavior 
over a useful range of values of s. 

Suppose now that some choice of breakpoints has been 
made and let si and h i ,  i = 1, . . ’, m, denote the associated 
subinterval lengths and minmax errors respectively. We 
seek new breakpoints and a number H such that the 
error on each of the new subintervals will have the 
common value H .  The number H and the lengths Si of 
the new subintervals are related by the following m + 1 
equations: 

m 
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Pass 1 Pars 2 

uo 0.0 0.0000 

hi 0.00227 0.0015 16 

U1 0.2 0.1621 

hi 0.001 85 0.001 56 1 

A single equation involving only the unknown H can 
be obtained as follows: 

Define bi = si/hii, i = 1, * * ., rn. Then 

, m  (8) 

(9) 

Si = bi H'i i = 1, . . .  

and 

Zbi H"i - ( p  - a) = 0 

Pass 3 Pass 4 

0.0000 0.0000 

0.001 547 0.0015488 

0.1639 0.1 639 

0.001 546 0.001 5486 

If all ai's have a common value a then equation (9) 
admits an explicit solution 

u2 

h ,  

.=[el" 

0.4 0.341 3 0.3423 0.3425 

0.00152 0.001580 0.001 548 0.001 5485 

If the ai's are not all equal then Newton's method may 
be used. For equation (9) the iteration formula is 

H 

r 1 

0.0015486 0.001488 0.001548 0.0015488 

The Newton iteration proceeds without difficulty since 
the left member of equation (9) is monotone in H for 
H 2 0. Since H must lie between minihi and maxihi, 
some number in that interval can be used to start the 
itera tion. 

After determining H, the Si's may be computed directly 
from equation (8). This procedure has been implemented 

in a FORTRAN subroutine called SEGFIT. The sub- 
routine which SEGFIT uses to compute a least maximum 
rational approximator on a single subinterval is called 
NODFIT and uses Maehly's second direct method 
(Ref. 13,14), 

Example 1. Ream (Ref. 3, 7) reported an interesting 
noniterative technique for computing segmented linear 
polynomial nearly minmax approximations that requires 
the integration of 1 f" Ilm. One of his examples was a five- 
segment linear approximation for e-z on [O,  11. Table 1 
summarizes four iterations of the program SEGFIT ap- 
plied to this problem. The breakpoints listed under Pass 4 
are the same as those given by Ream and the errors are 
also in agreement. 

Example 2. A two-segment rational approximator for 
sin xr/2 on [O,  11 that could be used in a 15-decimal- 
place floating-point subroutine for sine and cosine was 
obtained by using SEGFIT to find the least-maximum- 
relative-error fit using the form xS, (x?)/S, (x?) on the first 
segment and C5 ((1 - x)?)/C, ((1 - x)') on the second 
segment. Here Si and Ci denote polynomials of degree i. 
When fitting with odd or even functions, we use 
ai = ni + di + 2 rather than ai = ni + d,  + 1. Table 2 
summarizes the progress of this computation and Table 3 
lists the coefficients of the final approximator. 

Note, in Table 2, that the number of NODFIT itera- 
tions per SEGFIT pass dropped considerably after Pass 1. 

9 
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Pass 1 Pass 2 Pass 3 Pass 4 

UI 0.5 0.4173 0.415493 0.4154475 

1.888 0.213 0.20186 0.201597 
h1 ( 6 )  ( 2 )  ( 2 )  ( 1 )  

hz ( 9 )  ( 3 )  12) ( 2 )  
0.021 0.192 0.20135 0.201585 

Pass 5 

0.4154465 

0.2015888 
( 1 )  

0.2015905 
( 1 )  

hi-hz 

H 

The fixed endpoints are uo = 0, u1 = 1 .  The data hx, hz,hl-hz and H 
are given in units of lo-''. The number of NODFIT iterations used to 
compute each ha i s  given in parentheses below each value of ha. 
Total running time = 2 min 50 sec on IBM 7090 computer. 

1.867 0.021 0.00051 0.00001 2 -0.0000017 

0.180 0.20103 0.201574 0.2015905 0.2015897 

Table 3. Final approximator computed by SEGFIT 
algorithm in Example 2 

i S i  

0 69.787 72489 96816 54013 
1 -27.128 25520 70405 54734 
2 2.894 63946 94512 58433 
3 -0.128 30950 56392 83336 
4 0.002 44647 32443 48351 
5 44.428 24553 96867 14143 
6 

C i  

53.163 31207 42924 07420 
-64.587 60735 31183 04668 

12.252 21066 22690 00859 
-0.855 50223 30740 ,11058 

0.028 00745 79761 61843 
-0.OOO 42063 88543 45713 
53.163 31207 42923 96703 

In fact, the total number of NODFIT iterations used in 
Passes 2 through 5 was about the same as the number 
used in Pass 1. Since NODFIT accounts for most of the 
running time, this implies that Passes 2 through 5 to- 
gether required only about as much time as Pass 1. This 
efficiency of later passes is the result of implementing the 
assumption that the relative locations of the zeros of a 
least maximum residual curve are approximately invar- 
iant with respect to small changes of the interval. 

The choice of the rational forms used in this example 
deserves some explanation. For each index i = 0, 1, -.*,5 
we computed the least maximum approximator of the 
form xSi ( x 2 ) / S 5 - i  ( x z )  for sin x ~ / 2  on [0,0.5]. The minimax 

1 0  

error was found to be a convex function of i with a 
minimum at i = 4. 

C. Witzgall, in an unpublished manuscript, has shown 
that the Pad6 approximators for sine have similar behav- 
ior; i.e., among the six Pad6 approximators of the form 
xSi ( X ~ ) / S + . ~  ( x 2 )  the leading term of the error series has 
smallest magnitude when i = 4. This is of particular 
interest since it has sometimes been assumed that the 
diagonal or near-diagonal (here i = 2 or 3) forms of the 
Pad6 table have the smallest error. 

B. Problem I /  
In this formulation of the segmented least maximum 

approximation problem, we assume that an acceptable 
error T is specified and the number m of segments is to 
be determined. If the error is related to the subinterval 
length by the simple formula hi  = ki s", then the follow- 
ing algorithm suggests itself: 

Step 1. Guess a value of s,. 

Step 2. Use some minmax approximation method to 
compute h,. 

Step 3. Obtain a new estimate S, by computing 

s1 = ($ s1 

Step 4. Replace s, by S, and return to Step 2. 

When s, has been determined to acceptable accuracy, 
the procedure can be repeated for sa, etc. 

A variation of this procedure would be to compute a 
new value for ai after each iteration on the ith segment 
rather than using a preset value of ai throughout. This 
amounts to regula falsi iteration using log s and log (h/T) 
as the independent and dependent variables, respectively. 

This variation could also be used in Problems I and I11 
(Section IIC), but the only program in which it has been 
incorporated is SEQFIT, which was written to solve 
Problem 11. 

Example 3. The program SEQFIT was used to com- 
pute a sequential segmented minmax approximator for 
sine x using the ratio of two quadratic polynomials in the 
variable ti = x - ci as the approximating form on the ith 
subinterval, where ci is the abscissa of the center of the 
ith subinterval. The acceptable error was specified as 
T = 0.0005 and a relative tolerance of 0.005 was permit- 
ted in attaining this value. The program was permitted to 
run until five segments has been determined. 
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, 

The action of the subroutine NODFIT, which was used 
by SEQFIT to obtain the least maximum rational ap- 
proximator on each subinterval specified by SEQFIT, 
was terminated when it had leveled the residual curve 
to within a relative tolerance of 0.0005 or after 11 itera- 
tions if this tolerance was not met. 

Maximum 
residual 
in units 
of 1 0 - ~  

0.056 
2.84 
4.46 
4.95 
4.9993 

sine) about 12k(n+l) to 25k(n+ 1) times. In searching for 
peaks of the residual curve a tolerance of O.OOO1s' was 
permitted in the abscissa of a peak where s' is the dis- 
tance between the interpolation nodes bracketing that 
peak. Relaxing this tolerance would reduce the number 
of function evaluations per iteration. 

Subinterval 
number 

1 

2 

When NODFIT executes k iterations it solves 2k-1, or 
slightly fewer, n by n systems of linear equations (5 by 5 
in this example), and evaluates the object function (here 

Subinterval 
length in 
units of T 

0.2223 
0.546 
0.622 
0.643 
0.645 

0.645 
0.532 
0.540 

The progress of the computation is summarized in 
Table 4, and the final breakpoints and coefficients are 
given in Table 5. This approximator is not proposed as a 
useful approximator for sine, but was computed for the 
purpose of observing the behavior of SEQFIT in approxi- 
mating an oscillating function. 

i 

0 
1 

2 
3 
4 
5 

Table 4. Progress of SEQFIT algorithm in Example 3 

u i  

0.0 
2.025661 
3.72 1576 
6.1 29165 
8.01 0714 
9.777817 

Number of 
NODFIT 

iterations 
Total = 88 

SEQFIT 
iteration 
number 

1 
2 
3 
4 
5 

6 
7 
8 

9 
10 
1 1  
1 2  
13 

14 
15 
16 
17 

18 
19 
20 

Example 4. In certain applications of an 85-foot 
azimuth-elevation-mounted microwave antenna the posi- 
tioning of the antenna is controlled via paper tape, which 
carries the desired settings of azimuth and elevation at 
64-second increments of time. This tape is prepared by 
a large computer at a location remote from the antenna. 

13.05 
4.63 
5.007 

4 
3 
2 

In support of a study of alternative control techniques, 
the program SEQFIT was used to obtain segmented 
polynomial minmax approximators to the data that would 
normally have been supplied to control the antenna in 
observing the circumpolar radio source Cassiopeia A for 
a particular %-hour period. 

~ 

3 0.540 
0.828 
0.745 
0.7671 
0.7665 

11 
9 

11 
11 
6 

0.59' 

3.82' 
5.04' 
4.997 

10.05 

The desired minmax error was specified as T = 0.001 
degrees of arc. Table 6 shows the number of segments 
required for each fit and the total number of parameters 
needed to specify each segmented approximator. Note, 
for instance, that the azimuth is fully specified by 43 
parameters (five internal breakpoints, two endpoints, and 
36 coefficients) when the segmented quintic approximator 
is used as compared with the 1350 values needed when 
the azimuth is tabulated every 64 seconds. 

4 0.767 
0.653 
0.591 
0.599 

11.12 
6.81 
4.76 
5.009 

5 0.599 
0.556 
0.563 

3 
2 
2 

7.24 
4.68 
5.0003 

&Unreliable; NODFIT did not level the residual curve to within the relativo 
toleronce 0.0005. I 

Table 5. Final approximator compured by SEQFIT algorithm in Example 3 

bzi 

0.1 1 1  229 
0.175283 
0.097956 
0.128285 
0.1 524 17 

0.848423 0.452584 -0.380803 -0.093591 

0.26477 1 -0.948520 -0.154654 0.071 152 

-0.977729 0.17339 1 0.405009 0.04061 9 

0.708095 0.62871 3 -0.343935 -0.1 13236 

0.505975 -0.809599 -0.271415 0.1 10422 

11 
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Azimuth 

Elevation 

Table 6. Number of segments and parameters resulting 
from the use of the SEQFIT algorithm in Example 4 

Segments 3 7  14 0 6 
parameters 149 71 49 43 

Segments 31 1 1  0 6 
Parameters 125 5 6  49 43 

where (I denotes the right endpoint of the interval; in this 
example, n = 1.2. 

Quadratic Cubic Quartic Quintic 

Segments 
‘Our angle Parameters 

Segments 
Parameters 29 26 31 Declination 

machine time: 54  min 

C. Problem 111 
Another segmented approximation problem that has 

received some attention in the literature is the least 
squares problem. Here the given data could take the 
same form as in Problem I, but the object function to be 
minimized is 

Although programs exist that are used to solve the rational 
least squares problem, the present discussion will be 
restricted to segmented polynomial least squares ap- 
proximation. 

Even with this restriction there is a complication not 
present in Problem I. The object function, regarded as a 
function of the breakpoints, can have strong local minima 
that are not global minima. 

This situation is illustrated by Example 5, and Exam- 
ple 6 shows the possibility of a disconnected solution set. 

Example 5. Compute a two-segment zeroth-order ap- 
proximator for x’ on the interval [ - 1,1.2]. Explicitly, 
the problem is to determine numbers b, cl, and c. to 
minimize 

L b  (9 - c1)2dx + (x? - C?)’dX 
J-1 J b  

Since c1 and cz can be written as explicit functions of b, 
the above object function can be written explicitly as a 
function of the single variable b and in fact turns out to 
be simply a fourth-degree polynomial in b: 

( i /9)[(i+a)b4 - (1-a*)b3 - ( 1 + ~ 3 ) b ~  + (1-~4)b1 
- ( l+a5)]  + (1/5) (1+a5) 

On the interval [ -1,1.2] this polynomial attains an 
absolute maximum value of 0.3218 at b = -1, - 0.20, 
and 1.2, a local minimum of 0.2857 at  b = 0.76, and an 
absolute minimum of 0.1458 at b = 0.81. 

Example 6. Consider the problem of Example 5 on 
the symmetric interval [-1,1]. A minimum value of 
0.1222 occurs at b = 20.71 and a maximum value of 
0.1778 occurs at b = 21 and b = 0. 

The existence of such examples as these shows the 
need for more study of Problem I11 toward the goal of 
discovering conditions under which a local minimum 
may be recognized as being a global minimum. 

Solution Methods for Problem 111 

In spite of the pitfalls inherent in this problem, cases 
of practical interest have been encountered and appar- 
ently solved. 

Ream (Ref. 3 ,7)  gave a noniterative method for obtain- 
ing an approximate solution to this problem when the 
functions r i  are linear polynomials. His procedure re- 
quires the integration of l f ” l ’ ’ 5 .  

Stone (Ref. 6) also solved this problem for the case in 
which the Ti’s were linear polynomials. He treated all of 
the variables uniformly, applying Newton’s method to the 
system of nonlinear equations obtained by setting all of 
the partial derivatives equal to zero. 

Bellman (Ref. 8) and Gluss (Ref. 9) regarded the prob- 
lem as being primarily a search for the correct ui’s with 
the understanding that for any choice of ui’s the least 
squares approximators r i  can be computed. A significant 
feature of this approach is the reduction of the number 
of variables whose values must be sought simultaneously 
by a nonlinear method. In Ref. 8 , 9  the search for the ui’s 
is formulated as a dynamic program. 

As in Problem I, the design of an efficient solu- 
tion method will be aided by consideration of the 
special properties of the problem at hand. Let e; (respec- 
tively e;) denote the magnitude of the difference at the 
left (respectively right) end of the ith subinterval be- 
tween f and its least squares approximator on that sub- 
interval. Then the equations expressing the nullity of the 

12 
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4 

partial derivatives of the object function with respect to 
the uiJs can be written as 

Pass 1 Pass 2 Pass 3 Pass 4 

0.080 0.0509 0.05206 0.052008 

At this point we need some assumption regarding the 
dependence of e: upon ui and ~ i - ~ .  We propose to 
assume that e; = kf s:~, where k:, si, and ai have the 
same meaning as in Problem I. 

U1 

e; 

Suppose now that the numbers si, e;, and e;, i = 1, .-., 
m, are associated with some choice of breakpoints and 
we seek new breakpoints so that the associated subin- 
terval lengths S i  and endpoint errors Ef will satisfy the 
m equations 

1.5 1.0622 1.0799 1.0791 

0.024 0.0535 0.051 95 0.052013 

E;,, = E ;  i = 1, ..., m - 1 (11) 

e; - e :  

rmr 

ni 

p i = @ -  

-0.056 +0.0026 -0.0001 1 +0.000005 

0.052 1 0.0380 0.0380 0.0380 

a (12) 
i:l 

The numbers kfcan be computed as kf = e:/s';l. Then 
assuming E: = k: Sqt, equation (11) becomes 

These equations permit the expression of each Si in 
terms of SI. To this end define bl = 1 and 

Then we obtain 

1 , m  s;, = b; S",  i = 1, e . .  

or 

1 , m  (13) Si = (bi S a , ) " ,  i = 1, 

Replacing Si in equation (12) by the right member of 
(13) provides a single equation involving the single un- 
known Sl. This equation may be solved explicitly for Sl 
if all ai's have a common value and otherwise may be 
solved by Newton's iteration. With S ,  known, the other 
Si's may be computed directly by equation (13). 

This procedure has not been programmed in full gen- 
erality; however, a program SEGSQ was written to 
handle approximation by segmented linear polynomials 
in order to obtain a comparison with the cases reported 
by Stone and Ream. 

Example 7. The function e-" is to be approximated 
over 0 2 x 5 3 by a two-segment linear approximator. 
There are thus just one internal breakpoint u1 and four 
coefficients to be determined. As is shown in Table 7, the 

Table 7. Progress of SEGSQ algorithm in Example 7 

value of ul, which was started at 1.5, was changed to 
1.0622 after the first pass and the rms of 0.0380 remained 
unchanged in its first three significant digits thereafter. 
The difference (e;  - e;), which the algorithm attempts 
to force to zero, exhibits linear convergence to zero with 
a ratio of about 0.045. 

The final pair of linear approximators obtained was 
0.9355-0.6001~ and 0.4416-0.1425~. This agrees with 
Stone's results to the three figures published. His break- 
point was u1 = 1.080. 

Ream (Ref. 3 )  estimated u1 = 1.074 and rms = 0.0260 
using his noniterative approximate method. Actually com- 
puting the least-squares approximators using Ream's 
value for u1 we obtained rms = 0.0380. This computation 
was checked using a desk calculator and 0.0380 is correct 
to the figures given. 

Examples 8 and 9. The problem of Example 7 was 
run using three and four segments, starting in each case 
with equally spaced breakpoints. In Example 8, the rms 
descended as follows : 0.0248, 0.0169, 0.0168, 0.0168, 
and in Example 9: 0.0143, 0.0095, 0.0094, 0.0094. The 
difference from Stone's results was at most 0.008 in the 
breakpoints and 0.003 in the coefficients. 

Example 10. The problem of Example 7 was run using 
15 segments. Note that this requires the determination of 
14 breakpoints and 30 coefficients. It would require 
higher precision than the 27-bit arithmetic that was used 
to accurately compute the rms in this case, but the con- 
vergence can be judged by noting the apparently linear 
convergence toward zero of the quantities (e;+] - e ; ) .  Rep- 
resentative data is given in Table 8. The lengths of the 
final subintervals varied monotonically from s1 = 0.1193 
to sls = 0.3593. The largest change in any breakpoint 
from Pass 4 to Pass 5 was 0.0016. 

Here the breakpoints were determined to within about 
i0.0016, and the computation involved the solution of 

13 
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Pass 1 

Table 8. Progress of SEGSQ algorithm in Example 10 

Pass 2 Pass 3 

0.001 096 

0.001085 

-0.00001 1 

0.00091 97 

0.0009246 

+0.0000049 

0.000684 

0.000672 

-0.00001 2 

0.0007 

0.00296 

0.00252 

-0.00044 

Pass 4 Pass 5 

0.001 1058 0.001 1029 

0.001 1084 0.001 1008 

+ 0.0000026 -0.0000021 

0.000923 2 0.00093036 

0.0009242 0.00093055 

+0.0000010 +0.00000019 

0.00066870 0.0006654 

0.00066953 0.0006664 

+0.00000083 -t 0.000001 0 

0.0007 0.0007 

0.00091 3 

0.00098 1 

+0.000068 

e; 

'8- 

(e; - e;) 

e ;4 

e 15 

(e; - 4) 

rmr 

_ _ _ _ _ _ ~  

0.00089 0.001 025 

0.00076 0.001042 

+ 0.0000 1 7 
0.0002 19 0.000604 

0.0001 86 0.000552 

-0.000033 - 0.00005 2 

0.001 1 0.0007 

- 0.000 1 3 

the basic one-segment approximation problem 75 times 
with very little additional computing. In comparison, note 
that a straightforward application of Newton's method 
would require setting up and solving a 44 by 44 system of 
linear equations for each iteration. 

In a straightforward computation based on dynamic 
programming, one might replace the interval [O, 31 by a 
grid of 61 equally spaced abscissas (grid spacing = 0.05). 
The computation would then entail the construction of 
14 tables of about 60 entries each and require the solu- 
tion of the basic one-segment approximation problem 
about 23,000 times. 

D. Remurks on Continuity of u Segmented 
Approximator at Breukpoints 

Among the additional conditions that might be imposed 
in a segmented' approximation problem, one of the first 
that comes to mind is the requirement of continuity of 
the approximator at the breakpoints. This Report does 
not consider computational methods for imposing this 
constraint?, but in this Section certain cases are identified 
in which continuity does not actually constitute an addi- 
tional constraint. 

In view of equation (10) the magnitude of the dis- 
continuity of a segmented least squares approximator at 

'This constraint is treated in Ref. 2 and 9 and useful relevant 
ideas can be gleaned from the literature on spline curve fitting; 
e.g., Ref. 4, 22, 23. 

the breakpoint z i t  is either 2e; or 0. In the least maximum 
case, the jump could be any magnitude from 0 to 27. In 
cases such as Examples 7, 8, 9, and 10, where a convex 
function is being approximated by segmented linear 
polynomials, the discontinuity is clearly zero. This special 
case is thoroughly treated in Ref. 2. 

This situation of zero discontinuity occurs in seg- 
mented nth degree polynomial approximation whenever 
n is odd and the function being approximated has a 
continuous nonvanishing (n+ 1)st derivative through- 
out the entire interval. This follows from the fact that in 
nth degree polynomial least squares or least maximum 
approximation, the residual curve must have at least 
n + 1 distinct interior zeros and, due to the nonvanish- 
ing (n+l)s t  derivative, at most n + l  zeros. 

If x i j  ( i  = 0, ..., n) denote the zeros of the residual 
curve on the ith subinterval then the residual curve 
admits the representation 

(x-zi,o) . * *  f( f l+l) ( t )  
( n + l )  ! 

and therefore, since n + l  is even, agrees in sign 
with f ( f l + l )  at  the breakpoints. As to the magnitude of 
the errors a t  breakpoints, equality for the least squares 
case is a consequence of equation (lo), while in the least 
maximum case the nonvanishing (n + 1)st derivative im- 
plies that the endpoints of each subinterval are points 
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at which the residual curve reaches its maximum magni- 
tude of T. 

Another situation in which continuity at the break- 
points need not be considered as a special constraint is 
that in which the approximator is intended to be used 
by a processor whose sensitivity is characterized by a 
nonzero “just noticeable difference” (jnd). Relative to 
such a processor the approximator will be effectively 
continuous if it has no discontinuities larger than the jnd. 

Thus if a segmented least maximum approximator can be 
obtained with T less than half the jnd, it will be effec- 
tively continuous. 

It may be that a discontinuity of specified magnitude 
a is tolerable at the breakpoints, but it is too costly, in 
some sense, to require T to be less than a/2.  Then weights 
may be introduced, having increasing magnitude near the 
breakpoints, in order to force the error, and thus the dis- 
continuity, to be smaller at the breakpoints. 

IV. CONCLUSIONS 

Problems I and 111 fall into the general class of para- 
metric minimization problems and as such may be 
attacked, and very likely solved, by a wide range of 
general-purpose procedures, such as Newton’s method, 
gradient or other descent methods, or various algorithms 
based on the recursive relations of a dynamic program- 
ming formulation. In applications in which the number 
of parameters to be computed is sufficiently small, and 
the precision requirement is sufficiently low, it probably 
makes little difference what method is used. In more 
difficult problems, the difference in efficiency of the vnri- 
ous methods is more significant. 

A study of Problem I resulted in the finding that the 
solution set (in the breakpoint-vector space) is connected 
and that from any starting point there is n descent path 
to the solution set. With this information available, some 
descent methods were tried, of which the procedure re- 
ported in Section IIA was found to be most satisfactory. 

The procedure developed for Problem I was then 
adapted to Problems I1 and 111. It should be kept in 
mind, however, that, in view of Example 5, a descent 
procedure for Problem 111 can lead to a local minimum 
that is not an absolute minimum. 

The procedures presented in this Report appear to be 
more efficient for the class of problems considered than 
the straightforward use of more general methods. 

A more general dynamic programming approach 
would be useful in cases in which (1) the data are essen- 
tially discrete (Ref. lo), ( 2 )  additional constraints are to 
be satisfied (Ref. 9, 24), or ( 3 )  in Problem I11 when a 
inore complete scan of the solution space is desired to 
improve the probability that the compiited local mini- 
mum is indeed a global minimum. 
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